

9th Annual Product Development Actuary Symposium June 2009


1E/2B: Are You Making a Classic Or a Penny Dreadful? Setting Long-Term Assumptions In a Short Term World

Cathy Bierschbach, Greg Roemelt

Product Development Actuary Symposium

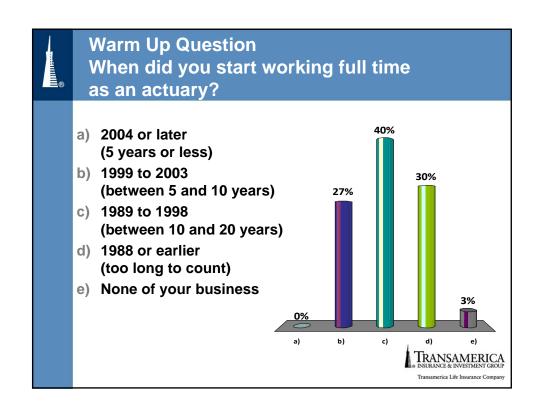
2009

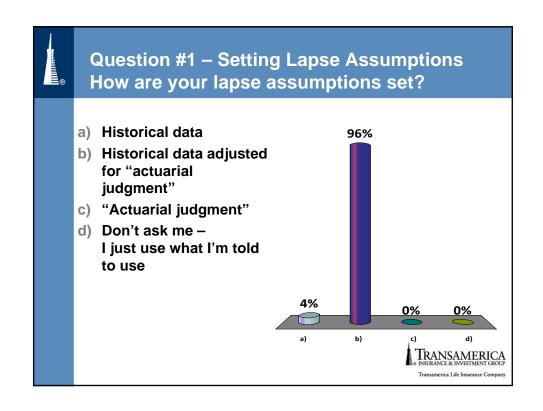
Session 1E/2B: Are You Making A Classic Or A Penny Dreadful? Setting Long-Term Assumptions in a Short Term World

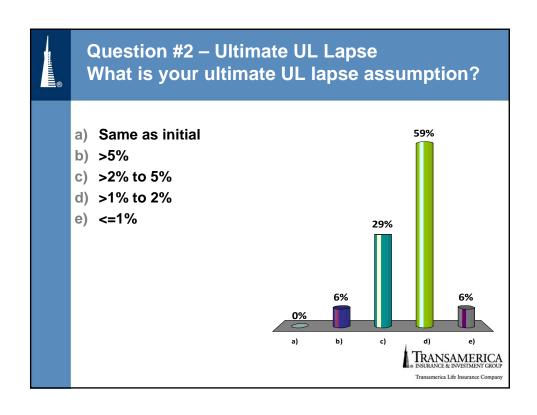
a.k.a. Share the Fear

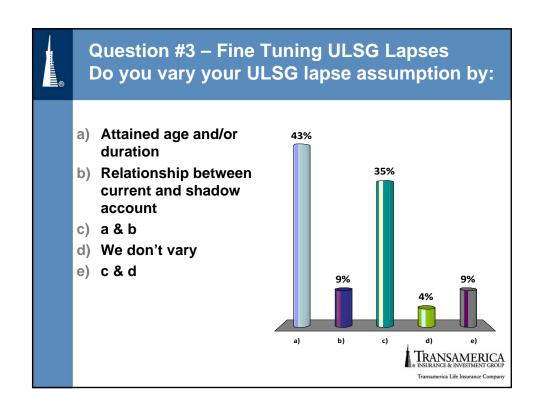
Cathy Bierschbach Vice President, Life Pricing June 29, 2009

Transamerica Life Insurance Company




Audience Response Keypad


- Enter you response when you see the answer now button
- A light on the keypad will indicate your response was recorded
- You may change your response while polling is open
- No need to hit the go button
- Please leave your keypad at end of session

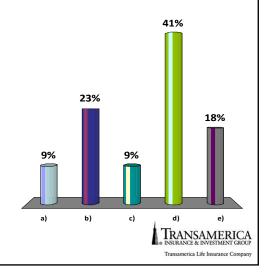


Flaws of Historical Data

- Changes in the competitive landscape
 - Term replacement wars
- Changes in competitive positioning
- Ability to get clean, credible data
 - Especially true when you segment to needed level of detail
- Appropriate experience may not be there yet
 - Shock lapses on term
 - Conversion utilization at end of level period
 - Ultimate UL lapse assumption

Power of Historical Data

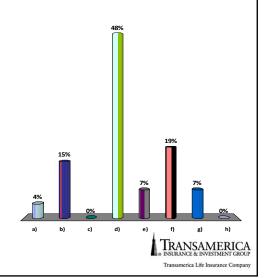
- If the past is understood, trends may be able to be extrapolated
- RGA's "The Term Insurance Market"
 - Lisa Renetzky presenting tomorrow
- Canada's "Term to 100" emerging experience



Question #4 – UL Premium Patterns What do you do to protect from variations?

- a) Slope of charges
- b) Product features
- c) Adjusted shadow account interest rates
- d) Combination of the above
- e) Huh?

UL Premium Patterns

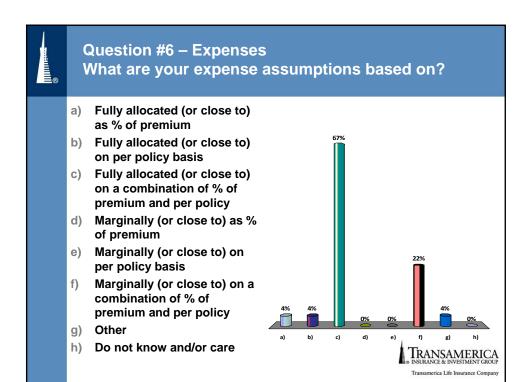

- Assuming everyone is testing: level, single and short pays
- Recent articles
 - Dialing down guarantees
 - Step pay and grade pay
 - Included strategy of paying target in year one and then dropping down the premium
 - IRR on ROP death benefits
 - Shadow account arbitrage
 - Strategic withdrawals of cash values
 - Catch-up provisions
- Would you notice the oddities in premium patterns?
- What premium should you reflect in your models?
- · Premium suspension vs. lapsing

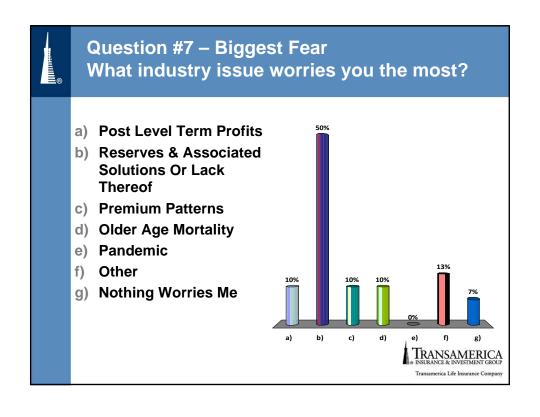
Question #5 – Mortality Table What is your base mortality table based on?

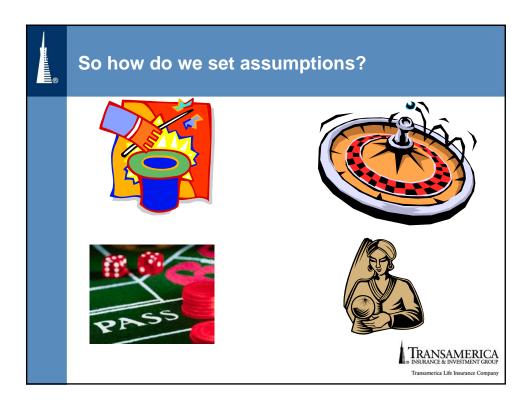
- a) 7580 Table
- b) 01 VBT
- c) 08 VBT
- d) Company derived based off 01 VBT
- e) Company derived based off 08 VBT
- f) Company derived
- g) Other
- h) Do not know and/or care

Female Older Age Mortality

|--|

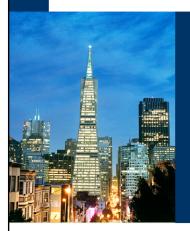

	Age 45 Age 55		Age 65		Age 75		Age 80			
Company	Prem	Target	Prem	Target	Prem	Target	Prem	Target	Prem	Target
A	6,170	7,130	9,830	11,020	16,526	19,100	30,502	28,260	47,771	39,980
В	5,895	7,500	9,656	11,900	16,403	19,000	29,804	35,000	50,640	53,000
С	6,036	8,210	9,751	11,220	16,791	18,600	30,506	30,370	45,986	46,880
D	6,026	6,297	9,497	10,080	15,929	17,291	29,794	31,176	45,860	51,558
E	6,774	7,196	10,214	11,696	16,617	18,596	30,363	31,296	48,683	47,556
F	6,399	8,440	10,287	13,250	15,939	19,060	30,121	32,090	45,868	44,120
G	6,525	6,525	10,892	10,892	20,448	20,448	39,757	39,757	53,041	53,041
Н	6,467	6,840	9,815	10,760	16,558	17,580	31,065	29,950	50,383	40,580
I	6,417	7,143	10,132	11,818	16,693	19,830	31,577	32,584	55,643	57,841
Transamerica	6,212	7,620	9,840	11,720	16,924	19,500	31,920	30,580	47,811	45,280
% from lowest premium/highest target	5.38%	-9.72%	3.61%	-11.55%	6.25%	-4.64%	7.14%	-23.08%	4.25%	-21.72%
Rank of TransACE	5 of 10	3 of 10	6 of 10	4 of 10	9 of 10	3 of 10	9 of 10	7 of 10	5 of 10	7 of 10


YRT Reinsurance Rates/Pricing Mortality


	1111110	aranoo riat	our moning n	.o.tantj
	Avg 1-5	Avg 6-15	Avg 16-25	Avg 26-35
41-50	112%	126%	185%	171%
51-60	111%	122%	170%	122%
61-70	125%	125%	152%	109%
71-75	138%	124%	132%	103%
76-80	141%	107%	113%	93%
81+	141%	96%	83%	82%

So how do we set assumptions?

Carefully after:


- Talking to sales and marketing
- Looking at historical data
- Looking at new illustrations
- Lots of scenario testing
- Looking at impact on various cells

Product Development Actuary Symposium

2009

Session 1E/2B: Are You Making A Classic Or A Penny Dreadful? Setting Long-Term Assumptions in a Short Term World

a.k.a. Share the Fear

Cathy Bierschbach Vice President, Life Pricing June 29, 2009

Transamerica Life Insurance Company

TOWERS

Setting Long Term Assumptions in a Short Term World

Greg Roemelt

June 29, 2009

2009 Towers Perri

Importance of Economic Assumptions for Pricing

- Impact on Cash Flows
- Different than liability assumptions
 - Liability assumptions apply to large number of policyholders
 - Economic assumptions can be simulated over a large number of scenarios, but only one scenario will actual occur

C:\Proposals\Product Development.pp

© 2009 Towers Perri

....

Developing Economic Assumptions for Pricing

- Default rates and costs
- Credit spreads
- Call and prepayment behavior

C:\Proposals\Product Development.ppt

.....

Default Costs

- Traditional Default Cost Development
 - Probability / Severity Approach
 - Both factors varied by quality of Assets
 - Probability may vary over time
 - Severity developed based on recovery rates

C:\Proposals\Product Development.p

© 2009 Towers Perri

velopment.ppt

Comparison to Reality

- Before defaulting, bonds usually are downgraded
- Historical default rates developed based on initial ratings
- Severity based on long term recovery rates

C:\Proposals\Product Development.ppt

.....

Deficiencies in the Simplified Approach

- Does not measure increased cost of capital associated with downgrades
- May not measure increased likelihood of default after downgrade
- Does not include a cost of capital for time period between default and ultimate recovery
- Lacks flexibility and is less friendly for stochastic methods

C:\Proposals\Product Development.pp

© 2009 Towers Perri

roposals\Product Development.ppt

More Robust Methodology for Developing Default Costs

- Develop a matrix of bond upgrades and downgrades
- Use a lattice approach to develop the probabilities of a bond being in the various rating classes at all times
- Probability of default in any period is weighted average of the annual class default rates applied to the amounts in each class.
- Capital associated with asset is based on weighted average capital cost

C:\Proposals\Product Development.ppt

© 2009 Towers Perri

Example Moody's One Year Letter Migration Rates

To From	Aaa	Aa	А	Baa	Ва	В	Caa	Ca-C	Default
Aaa	91.4%	7.9%	0.7%	0.0%	0.0%	0.0%	0.0%	0.0%	0.00%
Aa	1.1%	91.1%	7.4%	0.3%	0.0%	0.0%	0.0%	0.0%	0.02%
А	0.1%	3.0%	91.2%	5.2%	0.5%	0.1%	0.0%	0.0%	0.03%
Ваа	0.0%	0.2%	5.1%	89.1%	4.4%	0.8%	0.2%	0.0%	0.17%
Ва	0.0%	0.1%	0.4%	6.2%	83.6%	7.8%	0.6%	0.1%	1.19%
В	0.0%	0.0%	0.1%	0.4%	5.6%	82.7%	5.7%	0.7%	4.66%
Caa	0.0%	0.0%	0.0%	0.3%	0.6%	10.2%	69.7%	4.1%	15.05%
Ca-C	0.0%	0.0%	0.0%	0.0%	0.4%	3.4%	11.5%	48.1%	36.59%

C:\Proposals\Product Development.ppt

© 2009 Towers Perrin

Example Impact of Migration Over Time

	Year											
Rating	0	1	2	3	4	5	6	7	8	9	10	
Aaa	0%	0%	0%	0%	0%	1%	1%	1%	1%	1%	1%	
Aa	0%	3%	5%	7%	9%	10%	12%	12%	13%	14%	14%	
А	100%	91%	84%	77%	71%	67%	62%	59%	56%	53%	50%	
Ваа	0%	5%	9%	13%	16%	18%	19%	21%	22%	23%	23%	
Ва	0%	1%	1%	2%	2%	3%	4%	4%	5%	6%	6%	
В	0%	0%	0%	0%	1%	1%	1%	2%	2%	2%	3%	
Caa	0%	0%	0%	0%	0%	0%	0%	0%	0%	1%	1%	
Ca-C	0%	0%	0%	0%	0%	0%	0%	0%	0% C:\Proposals\Prod	0%	0%	
											34	

Historical	Default Rates	1970-2008
ı iistoricai	Delault Nates	, 17/0-2000

	Annual
Rating	Probability of Default
Aaa	0.000
Aa	0.017
A	0.025
Ваа	0.172
Ва	1.192
В	4.660
Caa	15.050
Ca-C	36.590

C:\Proposals\Product Development.ppt

roposals\Product Development.ppt

Weighted Average Defaults and C-1 Factors

Year	1	2	3	4	5	6	7	8	9	10
Annual Rate	0.025%	0.048%	0.075%	0.106%	0.140%	0.176%	0.214%	0.253%	0.291%	0.330%
C-1 Factor	0.245%	0.309%	0.376%	0.444%	0.513%	0.581%	0.649%	0.715%	0.779%	0.840%

C:\Proposals\Product Development.ppt

© 2009 Towers Pen

Impact of Recover Assumption

- Recover assumption translates the probability of default into a cost of default
- Example:
 - Probability of default = 1%
 - Recovery after default = 40%
 - Cost of default = 60bp
- Recovery amounts can be determined from:
 - Market prices immediately after default
 - Ultimate recoveries
- If ultimate recoveries are used, should factor in cost of capital associated with holding securities in default

C:\Proposals\Product Development.pp

© 2009 Towers Perrir

Jacob Todaci Development.ppt

The Credit Spread Puzzle

- Credit spreads are the difference between yields on corporate debt subject to default risk and risk free Treasury securities
- Credit spreads are generally understood as compensation for credit risk
- But explaining the precise relationship has been difficult
- For example, from 1997 to 2003, average spread on BBB-rated bonds was 170 basis points, by average yearly loss from default was 20 basis points

C:\Proposals\Product Development.ppt

© 2009 Towers Perri

Decomposing Credit Spreads

- Expected losses
 - Small fraction of overall spread
- Taxes
 - Treasury bonds only subject to Federal tax
 - Corporate bonds taxed by Federal and states
- Risk premium
- Liquidity premium
 - Thin market
 - Risk of market becoming illiquid

Decomposing Credit Spreads

- Difficulty in fully diversifying credit risk
 - Without full diversification, unexpected losses will be priced in the spread
 - Skewed returns

Difficulty in Diversity - CDO Example

- Structure of an Arbitrage CDO
 - Long position in low quality debt paying high spreads
 - Short position in high quality debt paying low spreads
- Hypothetical CDO
 - Collateral pool of Baa bonds with expected loss of 25 bp
 - 175 bp credit spread on Baa
 - Issue Aaa bonds at 50 bp

C:\Proposals\Product Development.pp

als/Product Development.ppt

Difficulty in Diversity - CDO Example

- Typical CDO
 - 100 names in collateral pool, diversity score of 40
 - Can take months to assemble collateral
 - Marginal costs of adding more bonds are high
- Full diversification is not achieved by investors with the most to gain

C:\Proposals\Product Development.ppt

© 2009 Towers Perri

Implications for Setting Credit Spread Assumptions

- Credit spreads are related to default cost, but also include other factors
- Undiversified risk is another large component of spreads
- The level of spreads associated with undiversified risk is related to default costs

Callable Bonds

- Finance theory shown optimum time to call bond is when it is first in the money
- As usually, reality does not follow theory
 - Firms make irrational decisions
 - Delaying in-the-money calls
 - Calling an out-of-the-money bond
- Implications for asset projection models

Empirical Research

- King an Mauer (2000) examined factors affecting the timing of calls on non-convertible bonds
- Three groups:
 - Called immediately when bond went into the money
 - Called when bond was out of the money
 - Delayed call after bond went into the money
- Significant cost to delaying call

C:\Proposals\Product Development.pp

© 2009 Towers Perrir

sals\Product Development.ppt

Factors Impacting In The Money Calls

- Opportunity cost of leaving bond outstanding (+)
- Amount of time bond has been in the money (+)
- Slope of the yield curve (+)

C:\Proposals\Product Development.ppt

.....

Implications For Setting Call Assumptions

- The more calls in are the money, the more likely the bond is to get called
- The longer a bond is in the money, the more likely it is to get called
- Out of the money bonds do get called
- Slope of the treasury curve impacts call behavior

Factors Impacting Mortgage Prepayments

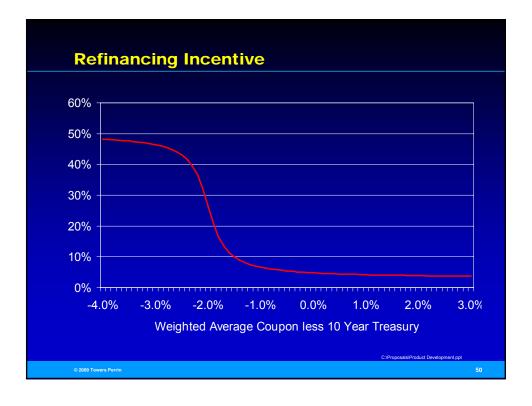
- Refinancing incentive
- Age
- Seasonality
- Burn out

Ross - Roll Model

- Refinancing Incentive
 - Based on minimum and maximum prepayment rates, slope parameter and expected parameter

$$RI = a + b * acrtan [c + d * (WAC - 10T)]$$

a = Average (MaxCPR,MinCPR)


 $b = (MaxCPR - a) / (\pi/2)$

c = 1000 * slope / b

d = - d / expected

C:\Proposals\Product Development.pp

O.II TOPOSCI

Other factors

- Age = min (month/30, 1)
- Seasonality factors varying by month
- Burnout
 - =0.3 + 0.7 * outstanding principal / initial principal

Ross - Roll Model

Monthly prepayments = RI * Age factor * Seasonality Factor * Burnout Factor

Burnout

- Not path dependent in Ross/Roll model
- Possible enhancement is to bifurcate pool into two cohorts based on propensity/ability to pre pay

Importance of Asset Assumptions to Pricing

- Impact profitability
- Not always easy to develop
 - Good candidate for sensitivity testing and results distribution analysis
- Testing can be performed over multiple scenarios, but only one will occur

Sources

- Corporate Default and Recovery Rates, 1920 2008, Moody's Global Credit Policy
- Amato, Jeffery D. and Eli M Remolona, 2003, The Credit Spread Puzzle. BIS Quarterly Review, 51-62
- Lipton Amy F., and Nandu Nayar, 2007, Timing of Corporate Callable Bonds: An Empirical Examination Using Survival Analysis

C:\Proposals\Product Development.pp

© 2009 Towers Perri
